Рис. 138. Микросмерч
Особо отметим, что сильные вертикальные потоки внутри микросмерчей сочетаются с интенсивной турбулентностью. Поэтому пересечение этих образований на дельтаплане может привести к сильной болтанке и броскам. Особенно нежелательна встреча дельтаплана с нижней половиной микросмерчей, сбоку от которой обычно наблюдаются сильные нисходящие потоки. При попадании в них дельтаплан неожиданно может бросить вниз. Естественно, что этонаиболееопасновмоментпосадкиивзлета.
Возникновение вихрей при обтекании неровностей рельефа. Так как полеты на дельтапланах наиболее часто совершаются в слое трения, т. е. в зоне механической турбулентности, то особое внимание необходимо уделить подробному рассмотрению условий полета вблизипрепятствий.
На рис. 139 показано обтекание прямоугольного объекта, например здания. Из рисунка видно, что завихрения вызываются углами объекта. Этот же механизм образования турбулентности действует и при обтекании поверхностей естественного происхождения, когда они имеютизломы.
Рис. 139. Обтекание прямоугольного объекта (а) иотдельно стоящего здания (б)
Рис. 140. Обтекание склонов различного профиляв сечении
На рис. 140 показано несколько случаев обтекания склонов различной формы в сечении. Плавный перегиб практически не турбулизирует поток (рис. 140, а). Резкий перегиб (рис. 140,6) при слабом ветре вызывает более или менее устойчивый вихрь. С усилением ветра образуется менее устойчивая, но более сильная вихревая зона (рис. 140,в). С ростом плотности турбулентностьобразуетсяприменьшейскоростиветра.
Радиус кривизны кромки склона – другой важный фактор, определяющий наличие турбулентности. Чем он меньше, т. е. чем острее кромка, тем сильнее турбулентность при той же скорости ветра. Склон, изображенный на рис. 140, г, потенциально опасен для полетов, так как здесь имеется турбулентность на вершине даже при слабом ветре. Условия турбулентности, близкие к рассмотренный выше, существуют также на гребнях холмов. На рис. 141 даны три типичных случая. В случае, показанном на рис. 141, а, мы видим обтекание слабым ветром гребня с пологим подветренным склоном. В случае, изображенном на рис. 141,б, показан подветренный ротор у гребня, возникающий при более сильном ветре и большей крутизне склона. Рис. 141,в иллюстрирует наиболее частый случай обтекания гребня, когда на подветреннойсторонеустанавливаетсязонасплошнойтурбулентности.
Рис. 141. Обтекание холмов игребней различной формы в сечении..
С подветренной стороны гребня иногда возможно стартовать, используя нижнюю часть пригребного ротора, где воздух движется к вершине (рис. 142). Однако после старта аппарат окажется в зоне беспорядочных вихрей. Такой полет, когда аппарат непрерывно бросает во все стороны, могут позволить себе только очень опытные пилоты. Риск, на который они при этом идут, достаточно велик и он, конечно, должен быть оправдан целью такого опасного полета.
|